

 DESTRUCTION NOTICE

FOR CLASSIFIED DOCUMENTS, FOLLOW THE PROCEDURES IN
DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION 11-19
OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM REGULATION,
CHAPTER IX. FOR UNCLASSIFIED, LIMITED DOCUMENTS, DESTROY
BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS
OR RECONSTRUCTION OF THE DOCUMENT.

 DISCLAIMER
THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED
AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION
UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

 TRADE NAMES
USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR
APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE
OR SOFTWARE.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1.AGENCY USE ONLY

2. REPORT DATE
 August 2007

3. REPORT TYPE AND DATES COVERED
 Final

4. TITLE AND SUBTITLE
 Mini-Rocket User Guide

5. FUNDING NUMBERS

6. AUTHOR(S)

 George A. Sanders, III and Ray Sells

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 TR-AMR-SS-07-27

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

 A

13. ABSTRACT (Maximum 200 Words)
 This document describes the use of a missile/rocket fly-out model that represents a significant advance in
efficiency for these type of simulations given its modest requirements for complexity and runtime efficiency.
The model is useful for generating trajectories and associated flight parameters for multi-stage powered missiles
flying over a rotating, spherical earth. The model uses a unique osculating plane formulation that preserves
relatively high fidelity while maintaining run-time efficiency and simplicity of input. This formulation provides
for user-specified flight guidance options including ballistic flight and profiles for acceleration, flight path angle
rate, and flight path angle. This model was designed to expedite many of the same analyses conducted with the
old industry-standard ROCKET code – hence the name “Mini-Rocket.”

See page ii

14. SUBJECT TERMS

15. NUMBER OF PAGES
70

 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. Z39-18
 298-102

Commander, U.S. Army Research, Development, and
 Engineering Command
ATTN: AMSRD-AMR-SS-AE
Redstone Arsenal, AL 35898

C++, Object-Oriented, Missile Simulation, 6 Degree-of-Freedom, Mini-Rocket

ii

ABSTRACT (CONTINUED

While this manual documents the use of a standalone, executable version of Mini-Rocket, it also
provides enough information to configure the Mini-Rocket source code as an embedded model
and/or to modify it for a specific application.

Mini-Rocket was built with C++ Model Developer (CMD). CMD is a highly-refined C++
source code environment for building missile simulations such as this one. CMD provides a
common platform for building a wide range of missile simulations ranging from simple fly-out
models to high-fidelity six Degree-of-Freedom (DOF) simulations. The benefit is a clearly
structured architecture that makes it easy to maintain and discern model source code. However,
no C++ knowledge is needed to use Mini-Rocket.

Mini-Rocket User Guide

 iii

EXECUTIVE SUMMARY

Mini-Rocket is a very easy-to-configure, multiple Degree-of-Freedom (DOF) missile and rocket
fly-out model that accurately generates trajectories in three-dimensional space, including
maneuver characteristics. It features an advanced algorithm that accurately models missile
dynamics at a fraction of the computational cost of conventional 6-DOF simulations while
maintaining a significant amount of the fidelity. The program is ideal for those analyses
requiring trajectory modeling without the necessity of detailed modeling of the onboard missile
subsystems.

Program features include quick generation of trajectories and associated flight parameters for
multi-staged rockets and missiles flying over a spherical, rotating earth. In addition to simple
ballistic flight, user-selectable guidance options include user-specified profiles for acceleration,
flight path angle rate, and flight path angle.

For maximum flexibility, the program is configured as a simple console application that retrieves
data from an input data file at runtime. The program is written in standard C++ so that it can be
readily compiled and ran on a wide range of computer operating systems. Mini-Rocket provides
a viable alternative to 6-DOF simulation for many cases where 3-DOF simulation is inadequate
and represents a significant advance in utility for these type of simulations given its modest
requirements for complexity and runtime efficiency.

Mini-Rocket User Guide

 iv

PREFACE

The Advanced Experimentation Branch of the System Simulation and Development Directorate
(SSDD-AE), Aviation and Missile Research, Development, and Engineering Center (AMRDEC)
has as one of its missions the task of developing and/or discovering resources that specifically
aid the simulation design and analysis process. The technology initiative that is primarily
responsible for this effort is the Aviation and Missile Collaborative Design Environment
(AMCODE). The AMCODE is a toolbox that contains resources specifically tailored to
optimize the work flow process associated with the digital simulation task. One of the
cornerstone resources in the AMCODE tool box is the Mini-Rocket simulation. This tool is
uniquely suited for a majority of simulation tasks performed by the SSDD and other AMRDEC
directorates. It can be easily coupled with other AMCODE resources, such as a genetic
algorithm, to provide powerful and fast turnaround analyses of Army systems. The Mini-Rocket
simulation has evolved over the past 20 years and, as this report shows, has been extensively
proven effective and accurate by numerous users on a wide variety of missile and rocket
programs. The Mini-Rocket is a logical choice for AMCODE. It currently supports the design
trade studies for Advanced Technology Objective (ATO) programs within the AMRDEC and
other Army labs. It is also the backbone architecture for effectors (guns, missiles, lasers) in the
AMRDEC Missile Server Executable Code (ICD Version 2.3).

George A. Sanders, III

“Don’t put another ‘six-dof’ into our ‘six-dof’,” our lead simulationist said (or really
commanded) as I was given instructions to upgrade the target model in our interceptor missile
6 Degree-of-Freedom (6-DOF) simulation. The modeling requirement was somewhat unique:
we needed to model the sudden in-and-out-of-plane, “jinking” motion of a postulated
maneuvering re-entry vehicle. This new target was beyond the capability of the existing point-
mass target model (3-DOF) that heretofore had served us well. On the other hand, the
complexity of upgrading the model to a full 6-DOF representation was clearly overkill given the
fidelity required for this target. The timeframe was 1985. Little did I know at the time that my
response to this model requirement would begin an over 20-year model legacy whose wide range
of application I could then never have imagined.

A simple, but powerful, equations-of-motion formulation was arrived at after seemingly endless
trials and explorations into the arcane aspects of rigid body dynamics modeling. The search
ended with the discovery of a unique way to apply an osculating plane to describe the motion.
This resulted in a computationally efficient, intuitive algorithm that was first mechanized in a
FORTRAN subroutine. It allowed the modeling of a wide variety of trajectory motions in three-
dimensional space, but at much less the cost and complexity of a full 6-DOF representation. The
subroutine quickly proved itself capable of simulating a wide variety of target trajectory
behaviors for objects flying in the atmosphere. But was the model only confined to unpowered
flight trajectories? What if a longitudinal force was added to emulate an axial thrust component?

With the addition of an axial force, the subroutine rapidly evolved into a standalone rocket and
missile model where the trajectory could begin from a stationary launch point. This efficient
trajectory generator quickly found application for a number of modeling tasks. Depending on
analysis needs and the advance of programming language maturity (mine as well as advance in
state-of-the-art), it was coded in many dialects of Basic, Pascal, C, Ada, and many others. It was

Mini-Rocket User Guide

 v

used by myself and a growing list of users from things as simple as the motion of a piece of
debris, to endo- and exo- interceptor missiles, to intercontinental ballistic missiles, to theater and
tactical missiles and targets, and even to ground-test, sled-launched test articles. Versions of the
model were also coded to be embedded as missile model representations in larger battlefield
simulations1. There are doubtless many other applications that I am unaware of. Every now-
and-then, someone unexpectedly informs me that they are using the model or they have seen it
used (in many cases, they had no indication of the origin but saw my name in the source code!).
The model representations have proved their worthiness by providing efficient analysis results in
the many cases where the overhead and resources of a full-up 6-DOF were not required. Over
time, the domain for requiring trajectory modeling above that of a 3-DOF but not needing those
of a 6-DOF proved to be vast and the model fit. It fit very well.

Its widening use dictated that it be called something, so the name Mini-Rocket was adopted and
seemed to “stick.” Many users had previously used the industry-standard ROCKET2 code that
was very capable, but had become somewhat antiquated by the advance of programming
language technology. “Mini” implied that tools developed from the algorithms had much of the
functionality of ROCKET but that the code was more streamlined and easier to use. Using
“ROCKET” in the name conveyed functionality to a community that was already aware of the
very successful legacy of ROCKET (but recognizing that Mini-Rocket was developed
completely independently from ROCKET).

The formulation and publication of the C++ Model Developer3 (CMD) provided an ideal
medium for a formalized mechanization of the Mini-Rocket model. CMD was expressly
designed for building simulations of dynamical systems and has a well-defined and mature
architecture. CMD’s concise architecture was a natural complement for the simple but powerful
algorithms in the Mini-Rocket equations of motion. The CMD-implementation of Mini-Rocket
continues and expands on the successful original Mini-Rocket legacy of a powerful tool for
trajectory analysis. The CMD-based Mini-Rocket is currently being used for a wide variety of
missile modeling applications by a diverse community within the U.S. Army’s AMRDEC and
elsewhere.

What began as a FORTRAN subroutine has grown into a versatile and widely-used tool for
trajectory modeling and will certainly continue to proliferate. The malleability and simplicity of
the algorithms makes it easily tailorable for many applications. This guide aims to continue and
encourage this proliferation by undergirding the tool with formalized implementation and
documentation.

Ray Sells
May 24, 2007

1 Extended Air Defense Simulation (EADSIM) Methodology Manual, Section 5.9, “Interceptor Missile Flight.”
Teledyne Brown Engineering, Huntsville, AL, 1995.

2 Boehm, Barry W. Rocket: Rand's Omnibus Calculator of the Kinematics of Earth Trajectories. Prentice Hall,
(1964).

3 Sells, H.R., Sanders, G.A., Snyder, G., Hester, J.W., and Painter, L. 2005. “C++ Model Developer (CMD) User
Guide.” U.S. Army Technical Report AMR-SG-05-12, April 2005.

Mini-Rocket User Guide

 vi

TABLE OF CONTENTS

Page

 1. INTRODUCTION ... 1

 2. INSTALLATION... 3

 3. INPUT DATA FILE .. 4

 3.1 Data Formating ... 4
 3.2 Scenario and Control Data.. 5
 3.3 Stage Section Data.. 8

 4. MATHEMATICAL DESCRIPTION.. 15

 5. REAL WORLD COMPARISON... 25

 5.1 Initial Benchmark Comparison for Accuracy (1993).................................... 25

 5.2 A Trial of Successful Comparisons ... 28

 5.2.1 Integrated System Test Capability ... 28
 5.2.2 Anti Satellite Mission Scenario Analysis .. 30
 5.2.3 EADSIM .. 32

 5.3 A Legacy of Successful Comparisons Continues... 32

 5.3.1 Extended Air Protection and Survivability Program (EAPS).................. 32
 5.3.2 Interactive Distributed Engineering Evaluation and Analysis
 Simulation (IDEAAS).. 35

 5.4 Conclusion ... 37

 6. HOW MINI-ROCKET WAS BUILT.. 38

 7. SUMMARY.. 40

 REFERENCES .. 41

 ACRONYMS.. 42

 APPENDIX 1 MAKING PLOTS .. A-1

1.1 Installing the Plotter ... A-1
1.2 Basic Usage .. A-1
1.3 Scaling .. A-3
1.4 Exporting Plots for Publication ... A-3

 APPENDIX 2 EXAMPLE CASE.. A-2

Mini-Rocket User Guide

 vii

LIST OF ILLUSTRATIONS

Figure Title Page

1. Mini-Rocket Coordinate Frame Definition... 13

2. Missile Body Coordinate Frame... 17

3. Guidance Steering Reference Frame ... 19

4. Airframe Response Feedback Loop... 20

5. Commanded Acceleration Constraints.. 21

6. Missile Free-Body Diagram .. 21

7. Aries Simulation Comparisons... 26

8. ISTC Simulation Comparisons... 29

9. STARS Simulation Comparisons ... 31

10. EAPS Side-by-Side Simulation Comparisons (6-DOF and Mini Robot)............ 33

11. Ground-to-Ground Missile Simulation Comparison ... 35

12. Prime Contractor Simulation Depiction of Complex “Loop-Back”
Maneuver.. 36

13. Mini-Rocket Replication of “Loop-Back” Maneuver .. 37

14. Object-Oriented Simulation Architecture and Simulation Construction
Hierarchy.. 38

15. OSK Train-of-Objects ... 39

Mini-Rocket User Guide

 viii

LIST OF TABLES

Table Title Page

1. Scenario and Control Data Descriptions ... 6

2. Stage Section Data Descriptions... 9

Mini-Rocket User Guide INTRODUCTION

 1

1 INTRODUCTION

Mini-Rocket provides the capability to model realistic trajectories associated with the boost and
fly-out of a multi-stage missile flying over a rotating, spherical earth. Multi-stage missiles are
modeled using flight sections to represent the missile's properties. Each flight section consists of
a separate specification for the aerodynamic, propulsion, and guidance parameters. Within a
flight section, any combination or sequence of guidance modes can be selected including
ballistic, prescribed acceleration, prescribed flight path angle rate or prescribed flight path angle.
This flexible combination of guidance options makes it possible to replicate virtually any missile
steering behavior, both in-plane and out-of-plane in three-dimensional coordinate space. A
unique osculating plane representation keeps prescribed maneuvers clearly discernable in either
pure pitch or yaw even though the missile motion itself may be complex.

The flight trajectories during boost and fly-out are realistically constrained with aerodynamic and
structural capabilities. Lateral acceleration for steering is aerodynamically limited according to a
user-specified angle-of-attack. Also a "hard" limit is placed on lateral steering acceleration
representing maximum g-loading structural capabilities.

This missile model was formulated with particular attention to the speed of execution. A unique
point-mass model with wind-axes is used to include the variation of drag with angle-of-attack as
the missile maneuvers without resorting to the computational burden associated with a full
6 Degree-of-Freedom (DOF) rigid body for the missile. Trajectories generated with this modified
point-mass model have been shown to closely match those generated by a very high fidelity
6-DOF simulation (within the resolution of time-history plots).

Mini-Rocket was built with C++ Model Developer (CMD)[1]. CMD is a highly-refined C++
source code environment for building missile simulations such as this one. CMD provides a
common platform for building a wide range of missile simulations ranging from simple fly-out
models to high-fidelity 6-DOF simulations. The benefit is a clearly structured architecture that
makes it easy to maintain and discern model source code. However, no C++ knowledge is
needed to use Mini-Rocket.

This manual is organized to equip the user to get Mini-Rocket “up and running” as quickly as
possible. Following this objective, the following section describes installation which is easily
accomplished since Mini-Rocket runs from a command-line interface. The contents of the input
data file are then described in a narrative tied to an example set of input parameters. Although
not required for operation, an in-depth mathematical description is then presented to give
additional insight into the model and how it can be extended. Perhaps the most important
question about any modeling tool is how well it represents what is being simulated. Mini-Rocket
has been rigorously compared to other accepted models and has obtained the confidence of a
wide variety of users for its ability to accurately model trajectories. A variety of example cases
supporting this claim are shown in Section 5. Section 6 gives a brief description of Mini-
Rocket’s implementation in code using the aforementioned CMD. This section is a starting point
for consulting the source code and CMD documentation [1] to understand the code
mechanization behind Mini-Rocket. Appendix 1 describes operation of a convenient plotting
tool (included with Mini-Rocket) for visualizing output. Appendix 2 builds on the input data

Mini-Rocket User Guide INTRODUCTION

 2

description in Section 3 showing a step-by-step example of using Mini-Rocket to generate a
trajectory.

While a standalone, executable version of Mini-Rocket is documented in this manual, the
underlying code that comprises Mini-Rocket is far more flexible than a simple standalone
program. Due to its modular, object-oriented coding structure, the source code is easily
configured for a broad range of applications including use as an embedded model in more
broadly-scoped simulations or modifications to add additional functionality. Thus, this manual
also serves the dual purpose as an introduction and starting point to configure the Mini-Rocket
source code for custom-tailored applications.

Mini-Rocket User Guide INSTALLATION

 3

2 INSTALLATION

Mini-Rocket is a single executable Windows file that is compatible with any MS Windows
machine that has a DOS prompt1. In addition to the single executable file, a data file is also
required. Make sure the data file is in the same directory as the executable.

The program is most conveniently executed by typing minirock at the DOS prompt in a console
window followed by a file name with the input data.

For example:
C:>minirock rocket.dat

If you do not include a file name with the minirock command, you are prompted for a filename:

Mini-Rocket v1.01
by Ray Sells, DESE Research, Inc.

Input file: _

Output is printed directly to the screen after the data file is entered. Normal DOS file commands
can be used to redirect output for storage, as needed. Mini-Rocket also automatically pipes data
to an output file for post-processing (plotting, for instance). Instructions for this automatic
output are in the following section.

1 While the instructions for installing and running Mini-Rocket in this guide are directed at the Windows operating
system, installation and running the program will proceed similarly for Unix/Linux operating systems since the
program is operated from a command line interface.

Mini-Rocket User Guide INPUT DATA FILE

 4

3 INPUT DATA FILE

This section illustrates by example how to configure an input data file to be used by the Mini-
Rocket missile fly-out model. The model can be used very effectively by making changes only to
the input data file. The input data file specifies the missile's properties, its flight guidance
instructions, and data reporting.

The missile fly-out is described by the use of multiple flight sections. Each flight section consists
of a separate specification of aerodynamic, propulsion, and mass properties as well as guidance
steering commands. Describing the missile as a series of flight sections provides the capability to
model virtually any missile. Normally the flight section will correspond to a stage but this does
not necessarily have to be the case. The mathematical formulation for each section is identical.
Each section consists of specification for

• vacuum thrust profile
• specific impulse
• nozzle exit area
• initial mass
• aerodynamic reference area
• aerodynamic tables for lift and drag
• guidance instructions

Within a section, guidance instructions consist of a table specifying periods of operation (by
means of sequentially listed start times) for any combination of four guidance phases:

• ballistic
• follow a commanded acceleration profile in the y and z channels
• follow a commanded flight path angle rate profile
• follow a commanded flight path angle profile

3.1 Data Formatting

Owing to CMD’s input/output system, format restrictions on the input data are very relaxed since
all numeric parameters are tagged to an identifier. The only rule on input is that the parameter
name must appear followed by its value on a single line. An optional equals sign can be used
between the name and value. The data can be specified in any order and there are no spacing or
column restrictions on how or where the data can appear. Comments can be freely interspersed
throughout the input data file.

Example:
The data in the input file can appear as:

tmax = 50.
v0 = 100.
h0 = 200.

Mini-Rocket User Guide INPUT DATA FILE

 5

The model also uses one- and two-dimensional tables in the data file. CMD also provides a very
flexible format for specifying tables. The exact format is apparent in the table descriptions that
follow.

3.2 Scenario and Control Data

Input data is divided into two sets. The first set (Scenario and Control Data) describes the fly-out
scenario and initial conditions as well as execution model options. The second set describes the
physical characteristics of each stage including aerodynamics, mass properties, and propulsion.
This section describes the first set of data for the scenario and initial conditions.

The following parameters describe the fly-out scenario and model execution instructions.

**** rocket ****
tmax = 100.
echo = 1
lon0_d = 45.
lat0_d = 38.708
v0 = 0.01
h0 = 0.0
az0_d = -70.
el0_d = 90.0
xrail=1000.0
nstages = 3
rotating_earth = 1

These parameters are described in Table .

The tag **** rocket **** must appear in the data file before any of the parameters. This
provides maximum flexibility to place the parameters anywhere in the file.

Mini-Rocket User Guide INPUT DATA FILE

 6

Table 1. Scenario and Control Data Descriptions

Name Description
tmax Simulation termination time. Missile launch is at time = 0. The simulation

will also terminate if the missile's altitude is less than zero.

echo echo = 1 to echo contents of data file to screen as they are read.
echo = 0 for no printout.

It is good practice to echo output while configuring the data file. That way,
if the simulation crashes for some reason while reading the input data, you
can see the last data item successfully read.

lon0_d Launch point longitude on a spherical earth (deg).
lat0_d Launch point latitude on a spherical earth (deg).
v0 The velocity of the missile when it is launched relative to the earth's surface

(m/sec). This parameter provides the flexibility of starting the simulation at
some time after the missile is actually launched or simulating an object
with an initial impulse applied (such as a bullet or an air-launched missile).

h0 Launch point altitude above the spherical earth’s surface (m).
az0_d Launch direction azimuth (deg).
el0_d Launch elevation (deg).
xrail The distance from the launch point over which the missile's gravity turn (or

pitchover) is constrained to zero (m). As its name implies, this parameter
can be used to include the effect of a launch rail if the missile is launched
non-vertically. The majority of missiles fail to build up enough
instantaneous axial acceleration at launch to prevent excessive pitching
over (due to gravity) when launched at an angle. Thus a launch rail is used
to point the missile immediately after launch, giving it time to accelerate to
sufficient velocity to develop lift.

This parameter does not necessarily have to correspond to the launch rail's
length (if one is used). As an alternative to formulating the guidance
commands to make the missile travel a straight line after launch, much
larger values of this length can be used (on the order of hundreds of meters
or more) to prevent the missile from pitching over due to gravity.

nstages Number of stages. The missile fly-out sequence is divided into discrete
stages. Stages are numbered sequentially 1..nstages. Independent properties
are specified for each stage. As a special case, two or more stages in this
model can be used to describe a single physical stage on the missile whose
properties change during flight for some reason. For example, the homing
stage may have a protective shroud covering its seeker window in which
case its aerodynamic properties would be different for the shrouded versus
the unshrouded vehicle. In this case, two stages in this model could be used
to describe the two sets of aerodynamic (and mass) properties for this
single stage.

rotating_earth A boolean parameter indicating whether or not earth rotation is turned on.
rotating_earth = 1 sets the earth rotation rate to 7.292115(10)-5 rad/sec.
rotating_earth = 0 sets the earth rotation rate to zero.

Mini-Rocket User Guide INPUT DATA FILE

 7

The following parameters specify output instructions to a data file and the screen.

Output
fname = OutputRun0.dat
pt = 0.01
pt_console = 1.0

These parameters are provided to designate output to the screen and to the output file designated
with fname. The tag Output must precede these parameters and designates where in the file for
the CMD parser to start looking for the parameters. The output data to the screen and file output
are identical. pt and pt_console are the output time increments for the output file and console,
respectively.

The parameters specified for output are as they appear in the source code with a p_ prefix. 0 or 1
designates whether or not the variable is output (0-no, 1-yes). For convenience, a description of
each parameter is included in the input data owing to the flexible nature of the CMD file parser.

p_range = 1 Ground range over spherical earth surfa ce (m).
p_h = 1 Altitude above spherical earth (m).
p_vel = 1 Velocity (m/sec).
p_mach = 0 Mach number.
p_q = 0 Dynamic pressure (N/m2).
p_p = 0 Local atmospheric pressure (N/m2).
p_vs = 0 Local velocity of sound (m/sec).
p_rho = 0 Local atmospheric density (kg/m3).
p_gamma_d = 1 Flight path angle, with respect to ho rizontal (deg).
p_alph = 1 Total angle-of-attack (deg).
p_mass = 0 Mass (kg).
p_xstage = 0 Identifier for current stage.
p_txv = 0 Vacuum thrust (N).
p_tx = 0 Delivered thrust (N).
p_amax_alph = 0 Max. acceleration at max.-specified angle-of-attack (m/sec2).
p_range_slant = 0 Slant range (m).
p_ay = 0 y-acceleration, in velocity axex coordinat e system (m/sec2)
p_az = 0 z-acceleration, in velocity axex coordinat e system (m/sec2)
p_ax = 0 x-acceleration, in velocity axex coordinat e system (m/sec2)
p_xmode = 0 Current guidance mode.
p_ay_cmd = 0 Commanded y-acceleration (m/sec2).
p_az_cmd = 0 Commanded z-acceleration (m/sec2).
p_lat_d = 0 Current latitude (deg).
p_lon_d = 0 Current longitude (deg).
p_azimuth_d = 0 Current azimuth of velocity vector (deg).
p_ca = 0 Axial force coefficient.
p_cd = 0 Equivalent drag coefficient.
p_cna = 0 Linearized normal force coefficient (/deg).
p_cla = 0 Linearized equivalent lift coefficient (/ deg).

These parameters may appear anywhere in the file; they need not be preceded by a tag.

Mini-Rocket User Guide INPUT DATA FILE

 8

3.3 Stage Section Data

The stage section parameters characterize the properties of each stage. The following data is
identically specified for all stages on the missile, 1...nstages . The data for each stage is
tagged to a text identifier **** stage n **** where n is the number of the stage. The stages do
not have to be specified in order (that is, stage 2 data may appear in the data file before stage 1
data). All data for each stage is associated with the most recent identifier that preceded it. Within
the block of data for each stage, the parameters may be specified in any order.

Scalar parameters for each stage are specified as:

**** stage 1 ****
dt = 0.01
tstage=40.
sref=0.6206
anoz=0.
alphmax=20.
amax=100.
isp=261.865
m0=2499.895

These parameters are described in Table 2.

Mini-Rocket User Guide INPUT DATA FILE

 9

Table 2. Stage Section Data Descriptions

Name Description
dt Integrating time step (sec). 4th order Runge-Kutta is used for integration.

Note that you can use multiple time steps per stage by simply having two
flight sections with identical properties, but with different time steps.

tstage Time to transition to next stage (sec). This time is referenced from the
starting time of the current stage (and NOT the current time).

sref Aerodynamic reference area (m2). This parameter is used in conjunction
with aerodynamic coefficients to compute lift and drag.

anoz The exit area of the nozzle used for axial propulsion (m2). This exit area is
used to adjust the vacuum thrust for atmospheric pressure. The local
atmospheric pressure reduces the delivered thrust by the product of the exit
area and the local ambient pressure.

alphmax The maximum total allowable angle-of-attack for maneuvering (deg). To
enforce realistic aerodynamic maneuvering, the lateral acceleration of a
section is limited using the angle-of-attack. The lateral force acting on the
vehicle is constrained using the product of the angle-of-attack, the linearized
normal force coefficient, the aerodynamic reference area, and the local
dynamic pressure. The maximum angle-of-attack for missiles is normally
around 20 deg, beyond which the aerodynamics become highly nonlinear
and less predictable.

amax An absolute hard limit on how much acceleration the missile can generate for
steering (m/sec2). This constraint is intended to reflect the structural limits of
the missile. This parameter typically varies 10 - 30 g's for long, slender and
short, stubby missiles, respectively. Homing stages or kill vehicles can
sometimes tolerate 50 or more g's.

The acceleration is also constrained by maximum angle-of-attack depending
on the atmospheric regime the missile is operating in.

isp Boost propulsion parameter describing the unit thrust per rate of expenditure
of propellant (fuel and oxidizer) (sec) in a vacuum. The thrust per unit rate of
propellant expenditure is this parameter multiplied by gravity, g, which
yields units of N per kg/sec. This quantity is typically in the range of 250 sec
for solid rocket motors at sea level.

m0 The initial mass for each section (kg). Mass is reduced during missile section
operation by propellant usage (if any) according to the specific impulse.

Tabular parameters for each stage are specified as follows. The tables can appear in any order;
the only caveat is that they should appear after the appropriate stage tag identifier (the CMD
parser first finds the stage tag identifier and then looks for the table tag).

The txv_table specifies the axial thrust profile.

txv_table
4
t txv
0.0 119484.02
40.0 119484.02
40.01 0.0
100. 0.0

Mini-Rocket User Guide INPUT DATA FILE

 10

This table is the vacuum propulsive thrust acting along the vehicle's longitudinal axis (N).
Normally this is the thrust profile during boost. The thrust at any time is linearly interpolated
from this table. The delivered thrust is the vacuum thrust minus the product of the nozzle exit
area and the local ambient pressure.

The first entry is the table tag which must be txv_table . The number of table entries, 4,
follows. The column labels, t and txv , are followed by their entries.

These ca_off and ca_on tables specify the axial-force coefficient data when the axial thrust if
off and on, respectively.

ca_off
10 2
amach
.2 .9 1.0 1.5 2. 3. 5. 7. 9. 10.
alpha
0. 10.
ca
.223 .223
.415 .409
.466 .460
.369 .383
.304 .307
.233 .261
.188 .214
.177 .201
.177 .200
.178 .200

ca_on
10 2
amach
.2 .9 1.0 1.5 2. 3. 5. 7. 9. 10.
alpha
0. 10.
ca
.201 .201
.374 .368
.419 .414
.332 .345
.274 .276
.210 .235
.169 .193
.159 .181
.159 .180
.160 .180

This coefficient is used to calculate the missile's drag along the velocity vector. The drag force is
the product of this coefficient converted to wind-axes, the aerodynamic reference area, and the
local dynamic pressure. A linear two-dimensional interpolation is used to compute this
coefficient as a function of angle-of-attack and Mach number. Two sets of data are provided for
the drag coefficient since the drag varies significantly depending on whether the section's axial
propulsion is on or off. The exiting plume of the motor's exhaust reduces the drag.

The first entry is the table identifier. The next row of data is the number of Mach # entries and
angle-of-attack entries. The specific Mach #’s (rows of data that follow) and angles-of-attack
(column of data that follow) are specified as shown. The ca data itself follows.

Mini-Rocket User Guide INPUT DATA FILE

 11

This cna_table specifies the normal force coefficient data.

cna_table
10
amach cna
.2 .0344
.9 .0381
1.0 .0444
1.5 .0459
2. .0490
3. .0565
5. .0563
7. .0562
9. .0560
10. .0559

cna is the linearized normal force coefficient as a function of Mach number (/deg). The force
turning the missile’s velocity vector for steering is calculated as the product of dynamic pressure,
aerodynamic reference area, this coefficient, and angle-of-attack. This coefficient describes the
linearization of the variation of the normal force coefficient with angle-of-attack. Typically, the
normal force coefficient versus the angle-of-attack is a parabolic-like curve, but it can be
approximated as a straight line for small angles-of-attack. The slope of this line is the linearized
coefficient. The normal force coefficient slope is linearly interpolated from this table. The
coefficient is typically on the order of 0.05/deg although it can be much larger if the missile has
significant wing area.

This coefficient is used in tandem with the maximum angle-of-attack input to limit the missile’s
lateral acceleration for steering.

The first entry is the table identifier. The next row of data is the number of cna entries. The cna
data itself follows.

The guide_mode_table is used to specify the type of guidance used for steering in this stage.

guide_mode_table
6
t mode
0. 0
20. 3
25. 1
30. 0
40. 3
100. 3

Four modes of steering can be independently specified: 0) ballistic, 1) follow a commanded
acceleration profile in the y and z channels, 2) follow a commanded flight path angle rate profile,
and 3) follow a commanded flight path angle profile. This table specifies the mode profile for
each stage. The guidance mode stays constant between table inputs (that is, table is step-wise
constant).

Mini-Rocket User Guide INPUT DATA FILE

 12

This method of guidance selection provides maximum flexibility in specifying how the missile
flies. Any order or sequence of flight modes can be prescribed using a mode or modes more than
once, if desired. Note that the commanded flight path mode, when active, always follows the
commands in the associated table at that time. Thus only one commanded flight path angle table
is needed even though this mode may be specified multiple times at different times in the flight.

Ballistic (mode = 0) is flight with no steering. The forces acting on the missile are only drag,
gravity, and axial thrust, if any.

Depending on the flight modes selected, the following tables may be used. They must appear for
each stage whether used or not. Linear interpolation is used on all the tables. The last value is
used if the current time (independent variable) is greater than the last entry.

The missile can be commanded to follow a pre-specified lateral acceleration steering profile
using ay_table and az_table (mode 1).

ay_table
3
t ay
0. 0.0
10. 9.0
40. 9.0

az_table
3
t az
0. -999.0
10. -999.0
100. -999.0

The units are m/sec2. Mini-Rocket uses an osculating plane formulation which greatly simplifies
this process. As shown in Figure 1, an orthogonal triad is composed of the missile’s velocity
axis (x), an axis perpendicular to the x-axis and tangent to the earth’s surface (y), and a final axis
that is the cross-product of the x and y axes (z). Thus the x-z plane is always the pitch plane (up-
down) and the x-y plane is the yaw plane (right-left). This makes it very intuitive to prescribe
the missile’s motion since +/- z is always up/down and +/- y is always left/right. In other words,
the az_table controls pitch and ay_table controls yaw. Contrast this simplicity with having to
ascertain what these directions are if a missile body coordinate frame (which rolls) was used to
describe the motion.

Mini-Rocket User Guide INPUT DATA FILE

 13

tangent to
earth's surface

ve
lo

ci
ty

 v
ec

to
r

position vector

Xbodyv

Ybodyv

Zbodyv

ecix

eciy

eciz

missilep
YX

YX

Z

Y

X

bodybody

bodybody
body

relativemissile

relativemissile
body

relative

relative
body

vv

vv
v

vp

vp
v

v

v
v

×
×

=

×
×=

=

Figure 1. Mini-Rocket Coordinate Frame Definition

Mini-Rocket User Guide INPUT DATA FILE

 14

The missile can be commanded to follow a pre-specified flight path angle rate steering profile in
the pitch channel using the gammad_table (mode = 2).

gammad_table
3
t gammad
0. 0.0
10. 0.1
100. 0.1

Units for this table are degree/second. The flight path angle is the angle between the missile's
velocity vector and the local earth's surface. In this guidance mode, steering occurs only in the
missile's pitch channel; the acceleration to change the heading is zero. Positive gamma_d pitches
the missile up.

The missile can be commanded to follow a pre-specified flight path angle steering profile in the
pitch channel with the gamma_table (mode = 3).

gamma_table
3
t gamma
0. 0.0
10. 80.0
100. 80.0

Units for this table are degrees. A simple feedback controller is used to command a pitch
acceleration based on the difference between the commanded flight path angle and the current
flight path angle. The dynamics of this feedback process, along with the gain of the feedback
loop, result in a lag corresponding to a first order system with a 1.0 second time constant. In this
guidance mode, steering occurs only in the missile's pitch channel; the acceleration to change the
heading is zero.

Data for succeeding stages is input in an identical manner. Simply precede the data with ****

stage 2 ****, **** stage 3 ****, and so forth.

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 15

4 MATHEMATICAL DESCRIPTION

This section describes the mathematical formulation of the missile fly-out model and is intended
to give more insight into operation of the program. The following calculations are updated each
integrating time step starting at launch. The equations are the same for each stage on a multiple
stage missile; stages are defined by specifying different properties for each stage.

The vector magnitude of the missile’s position vector is calculated in Earth-Centered Inertial
(ECI) coordinates:

 222

ZYX missilemissilemissilemissile pppp ++= (1)

where

=

Z

Y

X

missile

missile

missile

missile

p

p

p

p = missile position vector, ECI

The ECI position vector of the missile’s launch point is calculated by

+
++
++

=
)sin()(

)sin()cos()(

)cos()cos()(

0

00

00

0

0

0

late

elonlate

elonlate

launch

hr

thr

thr

p

θ
ωθθ
ωθθ

 (2)

where

launchp = launch point position vector, ECI coordinates

er = earth’s radius, 6371008.7714 m (mean radius of semi-axes in WGS84 Ellipsoid)

0h = launch point altitude above spherical earth’s surface

0latθ = launch point latitude

0lonθ = launch point longitude

eω = earth’s rotation rate, 7.292115(10)-5 rad/sec

t = elapsed time since missile launch

The earth’s rotation rate can optionally be set to zero.

The component of the missile’s velocity (in the ECI) frame due to the earth’s rotation is
calculated as

−
=

−
−
−

=×=
0

X

Y

XY

ZX

YZ

missilee

missilee

missileymissilex

missilexmissilez

missilezmissiley

missileearthearth p

p

pp

pp

pp

pv ω
ω

ωω
ωω
ωω

ω (3)

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 16

where

 earthv = local velocity due to earth’s rotation

=

=

ez

y

x

earth

ωω
ω
ω

ω 0

0

 = earth rotation rate vector, ECI

The missile’s velocity relative to the earth at the current missile’s position is

222

ZYX relativerelativerelativerelative

earthmissilerelative

vvvv

vvv

++=

−=
 (4)

where

relativev = missile’s velocity relative to earth

missilev = missile’s velocity referenced to fixed ECI coordinates

Unit vectors for a missile “body” coordinate frame are defined in Figure 2.

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 17

tangent to
earth's surface

ve
lo

ci
ty

 v
ec

to
r

position vector

Xbodyv

Ybodyv

Zbodyv

ecix

eciy

eciz

missilep
YX

YX

Z

Y

X

bodybody

bodybody
body

relativemissile

relativemissile
body

relative

relative
body

vv

vv
v

vp

vp
v

v

v
v

×
×

=

×
×=

=

Figure 2. Missile Body Coordinate Frame

The cross product relativemissile vp × is 0 for a vertical launch leaving the axis
Ybodyv undefined. In

this special case, the launch elevation angle is adjusted to 1 ,
2

<<− εεπ
 so that the cross product

is nonzero.

The flight path angle is calculated

 ⋅−= −

relativemissile

relativemissile

vp

vp1cos
2

πγ (5)

The altitude above the spherical earth’s surface is

 emissile rph −= (6)

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 18

The dynamic pressure and Mach number are

sound

relative

relative

v

v
M

vq

=

= 2

2

1 ρ
 (7)

where

ρ = atmospheric density at current altitude, h

soundv = speed of sound at current altitude, h

A 1962 standard atmosphere model is used to define the atmospheric properties.

The vacuum thrust, vacuumT , is linearly interpolated from a table of vacuumT vs. time.

The delivered thrust, deliveredT , is calculated:

 PaTT nozzlevacuumdelivered −= (8)

where

nozzlea = Nozzle exit area

P = atmospheric pressure at current altitude, h

The delivered thrust, deliveredT , is zero if 0 <− PaT nozzlevacuum .

The change in mass with propellant consumption is calculated:

 dt
I

T
m

sp

vacuum ∫−=& (9)

where

spI = Motor specific impulse

Guidance steering is accomplished by defining components of lateral acceleration along the body
y and z axes as shown in Figure 3.

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 19

Zbodyv

Xbodyv

Ybodyvya

za

Figure 3. Guidance Steering Reference Frame

The applied lateral accelerations, ya an za , turn the velocity vector,
Xbodyv . Each lateral

acceleration vector, normal to
Xbodyv , forms an osculating plane where the turning of

Xbodyv is

described by

 γ&va = (10)

where

a = applied acceleration normal to v (these two vectors comprise an osculating plane)
γ& = turning rate of v

The velocity, v, is tangent to the instantaneous direction of flight and the acceleration, a, is
normal to the flight path. Two osculating planes are formed in the y- and z- channels to
independently maneuver in each direction. These vectors for the two channels are defined as
described earlier (

Ybodyv and
Zbodyv). This maneuver axis convention (z is up/down and y is

left/right), in tandem with the osculating plane formulation, provide a very intuitive basis for
specifying the steering commands. Thus, a wide variety of maneuvers in three-dimensional
space can be programmed by manipulating ya and za .

Based on this osculating plane formulation, four guidance options are provided to specify ya and

za and, hence, turn
Xbodyv :

0) Coast (ballistic)
1) Follow commanded acceleration profile
2) Follow commanded flight path angle rate profile
3) Follow commanded flight path angle profile

These can be used in any combination and sequence during the flight.

For ballistic flight, the commanded accelerations are

0

0

=

=

Z

Y

cmd

cmd

a

a
 (11)

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 20

To follow a commanded acceleration profile, the acceleration commands are linearly interpolated
as a function of time from a one-dimensional table

)(

)(

taa

taa

ZZ

YY

cmdcmd

cmdcmd

=

=
 (12)

To follow a commanded flight path angle rate profile, the flight path angle rate command in the
z-direction (which controls pitch) is first linearly interpolated as a function of time from a one-
dimensional table

)(

0

t
ZZ

Y

cmdcmd

cmd

γγ
γ

&&

&

=

=
 (13)

The acceleration commands are then calculated

γγ cosgva

ZZ cmdrelativecmd += &
 (14)

where

g = local acceleration of gravity at missile’s altitude

Local gravity is added to the command to compensate for the missile’s natural gravity turn
downward. The local gravity is calculated as

 2

missilep
g

µ= (15)

where

=µ earth gravitational constant = 3986005.0e8
2

3

sec

m

A simple feedback loop is implemented to emulate closed-loop airframe response to follow a
flight path angle as shown in Figure 4.

)(t
ZZ cmdcmd γγ =

K

γ

Zcmda
+

-

Figure 4. Airframe Response Feedback Loop

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 21

The commanded flight path angle,
Zcmdγ , is linearly interpolated as a function of time from a

one-dimensional table. The commanded flight path angle is compared to the current flight path
angle, γ , and multiplied by a gain, K, to compute the commanded acceleration in the z-direction,

Zcmda . The gain, K, is calculated

τ

relativev
K = (16)

where

τ = time constant for a closed-loop first-order system = 1.0 sec.

The commanded acceleration is compensated for the missile’s natural gravity turn downward:

 γcosgaa
ZZ cmdcmd += (17)

The commanded acceleration in the y-direction,
Ycmda , is set to zero.

The commanded acceleration is subject to a number of constraints reflecting actual flight
conditions and hardware limits as illustrated in Figure 5.

αmaxa

αmaxa−

hard
amax

hard
amax−

Angle-of-Attack Limit Hard Limit

On Rail?
yes

no

Zcmda
Ycmda

0

0

=

=

z

y

a

a

Z

Y

cmdz

cmdy

aa

aa

=

=

Figure 5. Commanded Acceleration Constraints

The acceleration is first constrained by a user-specified angle-of-attack limit. The angle-of-
attack limit is based upon the free-body diagram in Figure 6.

α
αα

α

cos

sin

delivereddrefdrag

deliveredlrefaero

TCqSF

TCqSF

+−=

+=

α
V

aeroF

dragF

Figure 6. Missile Free-Body Diagram

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 22

where

aeroF = aerodynamic lift force

dragF = aerodynamic drag force

refS = aerodynamic reference area

αl
C = linearized lift force coefficient

α = angle-of-attack

dC = drag coefficient

The equation for lift can be simplified with the approximation

 ααα
αα

)(sin deliveredlrefdeliveredlrefaero TCqSTCqSF +=+= (18)

where

 αα ≈sin

From this, a maximum lift force,
maxaeroF , and corresponding maximum acceleration, amax, can be

defined based on the maximum angle-of-attack, maxα

m

F
a

TCqSF

aero

deliveredlrefaero

max

max

max

max)(

=

+= α
α

 (19)

The linearized force lift coefficient is linearly interpolated as a function of Mach number from a
one-dimensional table.

The commanded accelerations are also subject to hard limits which might reflect the missile’s
structural limit, for instance. Finally, just after launch, the acceleration is subject to a “launch
rail” constraint. In this case, the steering accelerations, ya and za , are simply set to zero so that

the missile is not allowed to turn. This constraint is imposed as long as the magnitude of the
vector, launchmissile pp − , is less than a user-specified limit (that is, the missile is still on the “rail”).

This option is useful for simulating non-vertical launches where time must be allowed for the
missile to generate enough lift to avoid pitching down and falling into the ground.

The total angle-of-attack can now be calculated subject to the steering acceleration limits by
rearranging the equation for lift:

deliveredlref

zy

TCqS

aam

+
+

=
α

α
22

 (20)

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 23

The acceleration due to drag is calculated using the expression for dragF in the free-body diagram

(Figure 6) and including gravity

 γ
α

sin
cos

g
m

TCqS
a delivereddref

x −
+−

= (21)

The drag force coefficient is linearly interpolated as a function of Mach number, angle-of-attack,
and power on/off from a three-dimensional table. Power is defined as on if 0>deliveredT .

The missile accelerations, in the missile body frame, are converted to ECI coordinates with the
previously defined unit vectors that define the body frame

 []

=

=′

z

y

x

bodybodybody

ECI

ECI

ECI

ECI

a

a

a

vvv

a

a

a

a
ZYX

Z

Y

X

 || (22)

Centripetal and coriolis accelerations must be added since ECIa′ is in a rotating frame:

 coriolislcentripetaECIECI aaaa ++′= (23)

where

()
missileecoriolis

missileeelcentripeta

va

pa

×=

××=

ω
ωω

2

The acceleration of the missile is successively integrated in the ECI frame to velocity, then to
position

∫

∫
=

=

dtvp

dtav

missilemissile

ECImissile
 (24)

The missile’s surface range from the launch point is calculated

 ⋅= −

launchmissile

launchmissile
e pp

pp
rr 1cos (25)

Mini-Rocket User Guide MATHEMATICAL DESCRIPTION

 24

The missile’s longitude and latitude are calculated

22

1

1

tan

tan

YX

Z

X

Y

missilemissile

missile
lat

e
missile

missile
lon

pp

p

t
p

p

+
=

−=

−

−

θ

ωθ

 (26)

where lonθ is calculated in the correct quadrant depending on the signs of
Xmissilep and

Ymissilep .

Mini-Rocket User Guide REAL-WORLD COMPARISON

 25

5 REAL-WORLD COMPARISON

Perhaps the most important question about any modeling tool is how well it represents what is
being simulated. This is certainly a pertinent question that should be addressed for Mini-Rocket
since it has been, and will continue to be, used for predictions that have significant impact on the
tasks and programs where it is applied.

Mini-Rocket has been rigorously compared to other accepted models and has obtained the
confidence of a wide variety of users for its ability to accurately model trajectories.
Conventionally, a formal Independent Verification and Validation (IV&V) process is used to
certify the accuracy of a tool. In this vein, Mini-Rocket has not been through a formal IV&V
process and, as such, the words “verification” and “validation” are not used in this section (nor
the title) since the authors recognize that the term IV&V conveys a specific meaning in the
formal software engineering terminology. More significantly, Mini-Rocket has been subjected
to perhaps more extensive external scrutiny (than a formal IV&V) by its widespread application
over a large number of tasks and users. In the end, the process used to establish accuracy is not
the central aim but, instead, how well the simulation represents the real-world process that is
being studied. The number of users and applications, which in a sense reflects confidence in the
tool’s accuracy, is a good metric for measuring a tool’s credibility. Most analysts are skeptics by
nature and will not use a tool until they convince themselves that it is accurate subject to their
own internal tests and processes.

This section provides a brief summary and illustration of cases where Mini-Rocket performance
predictions have been compared to other models and data over a period of the last 15 years. The
initial benchmark comparison to another simulation demonstrated that Mini-Rocket could be a
surrogate for higher-fidelity simulation. The Mini-Rocket credibility trail-of-record is then
extended with discussion of its application to more complex modeling tasks than the initial
benchmark. The section concludes with a discussion of recent and on-going Mini-Rocket
application where traceability to trusted external models is critical.

5.1 Initial Benchmark Comparison for Accuracy (1993)

The Aries is a ballistic missile defense testing target vehicle derived from the Minuteman. It was
used or planned to support ERIS, GBI, LEAP, and Brilliant Pebbles tests. An accredited 6-DOF
model was built for the Kinetic Energy Weapon Digital Emulation Center (KDEC) that was
successfully benchmarked to flight telemetry. An Aries representation was constructed in Mini-
Rocket to demonstrate that simpler models (than 6-DOF) could be an effective surrogate when
only the trajectory characteristics themselves are desired. Trajectory kinematic predictions from
the KDEC simulation were successfully compared for two cases: 1) Ballistic flight from a non-
vertical launch and 2) Guided flight with a pitchover maneuver after vertical launch [2].

Results from the comparison are shown in Figure 7.

Mini-Rocket User Guide REAL-WORLD COMPARISON

 26

a. Altitude Comparison

b. Velocity Comparison

Figure 7. Aries Simulation Comparisons

Mini-Rocket User Guide REAL-WORLD COMPARISON

 27

c. Flight Path Angle Comparison

d. Axial Acceleration Comparison

Figure 7. Aries Simulation Comparisons (Concluded)

A significant, but fortuitous, difficulty was encountered in the course of the comparison. The
Mini-Rocket results so closely matched those from the 6-DOF that they were virtually
indistiguishable from each other when plotted together! To overcome this, the difference
between the two curves are also plotted and read from the right scale. As is clearly seen, the
Mini-Rocket predictions very closely match the 6-DOF predictions. As a result of this
comparison, Mini-Rocket was successfully used to supply trajectory parameter data requests and,
in the process, satisfy those data requests much more quickly than could be accomplished using
the 6-DOF simulation.

Mini-Rocket User Guide REAL-WORLD COMPARISON

 28

5.2 A Trail of Successful Comparisons

The initial Aries representation and comparison set the stage for widespread Mini-Rocket
application. Some of the more prominent programs are summarized here.

5.2.1 Integrated System Test Capability

The Integrated System Test Capability was a key hardware-in-the-loop component of the system-
of-systems testing conducted by the then U.S. Army Space and Strategic Defense Command. A
trajectory model for an exoatmospheric interceptor was needed to “stimulate” other models,
including radar, for a key experiment. The model was complicated by the feature that the
interceptor performed a Generalized Energy Management Steering (GEMS) maneuver during
fly-out to meet intercept point geometry requirements. The GEMS maneuver could require
attitude changes up to nearly 180-degree angle-of-attack during boost — a complicated
phenomenom to simulate, even in a 6-DOF simulation.

The GEMS maneuver was implemented in Mini-Rocket and the trajectories were successfully
anchored to those generated by the engineering-level 6-DOF simulation used by the missile
developer [3]. A comparison of simulation results is shown in Figure 8.

Mini-Rocket User Guide REAL-WORLD COMPARISON

 29

180 deg

0 deg

a. Angle-of-Attack Comparison

b. Velocity Comparison

c. Ground Range Comparison

Figure 8. ISTC Simulation Comparisons

Mini-Rocket User Guide REAL-WORLD COMPARISON

 30

In particular, note the very high angle-of-attack, which in effect, produced a negative thrust
vector. This effective reverse thrust “wastes” energy to minimize and shape the velocity for this
particular intercept. The agreement between Mini-Rocket and the 6-DOF simulation is
remarkable for this complex maneuver, even though Mini-Rocket does not directly model the
missile rigid body dynamics.

The ISTC subsequently used Mini-Rocket as a driver to stimulate other models and as a risk-
reduction until a contractor-developed model was delivered.

5.2.2 Anti-Satellite Mission Scenario Analysis

The Strategic Target System (STARS) was selected as the carrier vehicle for kinetic energy anti-
satellite (ASAT) interceptor testing. In addition to being the simulation used to screen different
candidate booster systems, Mini-Rocket was used to study and establish test flight scenarios. A
number of constraints made configuring the scenario somewhat complicated. The ASAT kill
vehicle was to be launched from the Pacific Missile Range (Hawaii) for intercepts in the vicinity
of the Kwajelein Missile Range. A dog-leg maneuver had to be performed just after launch to
satisfy range safety requirements. A pitch-up maneuver, late into boost, had to be performed to
replicate geometry aspects of a satellite intercept. Although, Sandia National Laboratories, the
STARS developer, had overall simulation responsibility with their in-house 6-DOF simulation,
another simulation was needed to perform the large number of trajectory trades that were
required to fully develop mission scenarios. As a first step in establishing Mini-Rocket
credibility to satisfy this need, a Mini-Rocket STARS characterization was developed and
compared to trajectory data in the STARS Payload Designer Handbook [4]. Results of the
comparison are shown in Figure 9.

Mini-Rocket User Guide REAL-WORLD COMPARISON

 31

a. Axial Acceleration Comparison

b. Velocity Comparison

c. Trajectory Comparison

Figure 9. STARS Simulation Comparisons

Mini-Rocket User Guide REAL-WORLD COMPARISON

 32

The successful comparison demonstrated Mini-Rocket’s viability to rapidly screen large sets of
potential trajectories that could be explored in more detail with the Sandia National Laboratory
6-DOF simulation. In addition to being successfully used for the ASAT mission trajectory
studies, Mini-Rocket came to be used as a trusted simulation to address other ASAT studies,
including trajectory dispersion and preliminary range safety studies.

5.2.3 EADSIM

Early versions of Extended Air Defense Simulation (EADSIM) (version 4.0 and before) did not
have a simulation-based missile model per se; instead, interceptor missile trajectories were
represented by table look-ups. The data in the tables were generated by external simulations.
User requests for increased fidelity dictated that a missile flight model be directly incorporated
into EADSIM. Speed-of-execution was a key requirement and thus precluded use of a 6-DOF
representation. An embedded version of Mini-Rocket fit the requirement perfectly and was
integrated into EADSIM [5]. The Mini-Rocket model augmented EADSIM with the capability
to directly characterize the trajectory dynamics of interceptor missiles homing and engaging a
target. In essence, each new incorporation of a missile into the EADSIM fly-out model
represents another successful comparison since the performance of the Mini-Rocket-based
EADSIM model is checked against external trajectory predictions in the normal course of
confirming successful model installation.

5.3 A Legacy of Successful Comparisons Continues

Mini-Rocket builds on a successful legacy of accurately depicting trajectories for diverse rocket
and missile applications and has established itself within the AMRDEC as the tool of choice for
characterizing missile systems. As of the time of writing for this report, Mini-Rocket is being
actively exploited on two key programs within the AMRDEC.

5.3.1 Extended Air Protection and Survivability Program (EAPS)

The EAPS program is developing a missile concept to protect against short-range rockets,
artillery, and mortars. A key feature of the development, conducted in-house by the AMRDEC,
was to prototype a design based on simulation collaboration by the missile subject matter
experts. An evolving simulation, whose fidelity was consistent with the maturity of the design,
was used as the central collaboration tool to document the design. The strategy was to begin the
top-level aspects of the design with a reduced fidelity simulation and then mature it to a full
6-DOF as design of the missile’s subsystems progressed.

The object-oriented architecture of the CMD (described in a later section in this manual) was
selected as the ideal coding platform to execute the simulation development process. Mini-
Rocket, which is hosted in the CMD architecture, was used to study and assess candidate designs
due to its unique combination of relatively high-fidelity (compared to conventional 3-DOF) and
modest coding complexity and runtime efficiency (compared to 6-DOF). A baseline design was
arrived at after extensive trade studies with Mini-Rocket and the resulting design was remodeled
from a Mini-Rocket implementation to a full-up 6-DOF representation (all within the same CMD
code kernel). This presented the unique opportunity to simultaneously run the Mini-Rocket-

Mini-Rocket User Guide REAL-WORLD COMPARISON

 33

based EAPS missile in the same physical simulation as the 6-DOF-based EAPS missile (that is,
they are launched at the same time and fly out simultaneously) [6].

Figure 10 shows excerpts from an animation constructed from the simultaneous simulations.
Both a Mini-Rocket-based EAPS and a 6-DOF EAPS are shown flying out side-by-side, starting
from launchers that are slightly offset from each other.

6DOF
5DOF

a. Just After Launch

6DOF 5DOF

b) Initial Pitchover

Figure 10. EAPS Side-by-Side Simulation Comparisons
(6-DOF and Mini Rocket)

Mini-Rocket User Guide REAL-WORLD COMPARISON

 34

6DOF 5DOF

c. Initial Pitchover Complete

6DOF 5DOF

d. Downrange Flight

Figure 10. EAPS Side-by-Side Simulation Comparison
(6-DOF and Mini-Rocket) (Concluded)

The similarity between the trajectories and the missiles’ attitudes is remarkable knowing that the
underlying physics model characterizations (Mini-Rocket and 6-DOF) are completely different.
As documented in the Mathematical Description, Mini-Rocket does not directly model the rigid
body attitude of the missile, but instead the angle-of-attack. For Mini-Rocket, it was a simple
matter to “back-out” the attitude for the animation knowing the angle-of-attack (angle between
missile body and the velocity vector).

In addition to again confirming the accuracy of the Mini-Rocket equations-of-motion
(mathematical formulation), this incremental simulation evolution process implemented on
EAPS successfully demonstrated how simulation can be the central apparatus to coordinate the
missile design as opposed to its conventional role as a supporting analysis tool.

Mini-Rocket User Guide REAL-WORLD COMPARISON

 35

5.3.2 Interactive Distributed Engineering Evaluation and Analysis Simulation (IDEAAS)

IDEEAS is a tactical missile constructive simulation that incorporates interactive models of all
the tactical battlefield elements including shooters (missiles), surveillance and fire control radar,
and battle management. A key component of IDEEAS is a missile server that generates, on-
demand, tactical missile representations. It was not important for this missile-server to simulate
the onboard missile subsystems; the key IDEEAS requirement for a missile model is to
accurately depict trajectories that, in turn, stimulate or drive the other battlefield elements. Mini-
Rocket’s level of fidelity was ideal for this requirement, providing runtime efficiency without
undue complexity, In addition, Mini-Rocket, with its underlying CMD object-oriented kernel
could be readily embedded into IDEEAS. Because IDEEAS is Java-based, the Mini-Rocket
model algorithms were refactored in Java, with an identical architecture as the C++ model. The
object-oriented simulation kernel in CMD is programming language independent and was
already coded in Java (as well as other languages) so it was a straightforward exercise to convert
the model to Java. The Java-based Mini-Rocket was easily wrapped with a simple, but powerful,
interface that could be called by the IDEEAS executive to instantiate (create) a missile object [7].
The exact missile being simulated is specified via the conventional Mini-Rocket input file
described in this manual.

A Mini-Rocket-based missile model must have traceability to the original design before its
missile server representation can be used in IDEEAS. One of the more challenging models
successfully implemented in IDEEAS was a vertically-launched ground-to-ground missile. For
long-range intercepts, the trajectory is “lofted” so that lift can sustain a relatively long flight.
Successful comparison to the originating design activity’s 6-DOF simulation is shown in
Figure 11 for this scenario.

Figure 11. Ground-to-Ground Missile Simulation Comparison

Mini-Rocket User Guide REAL-WORLD COMPARISON

 36

Much more stressing from a modeling view are short-range trajectories. The missile is capable
of accomplishing very short range intercepts by flying out and “looping” back. A simulation-
generated example from the prime contractor developer is shown in Figure 12. Normally, this
would be very difficult to simulate given the complexity of the commands to execute the
maneuver.

Figure 12. Prime Contractor Simulation Depiction of Complex “Loop-Back” Maneuver

The unique osculating plane formulation behind Mini-Rocket made it relatively simple to
replicate the trajectory since a left/right and up/down frame-of-reference is used to specify
steering in the input data. Example Mini-Rocket-generated results are shown in Figure 13 which
very closely replicated the missile’s performance.

Mini-Rocket User Guide REAL-WORLD COMPARISON

 37

Figure 13. Mini-Rocket Replication of “Loop-Back” Maneuver

Several other missile-server representations have been developed within IDEEAS using the same
embedded Mini-Rocket engine.

5.4 Conclusion

A long, traceable heritage of comparisons exists to establish the accuracy of the Mini-Rocket
model and coding mechanizations. The comparisons to independently-developed data and
models shown in this section support the accuracy of Mini-Rocket predictions. Equally
significant to the plotted comparisons shown here is the fact that Mini-Rocket was subjected to
intense independent scrutiny before it was accepted and selected as a simulation tool for the each
of the applications described in this section.

Mini-Rocket User Guide HOW MINI-ROCKET WAS BUILT

 38

6 HOW MINI-ROCKET WAS BUILT

Mini-Rocket was built with C++ Model Developer . CMD is an open-source C++ source code
based environment for building simulations of systems described by time-based differential
equations. The principal design objective behind CMD is to provide a tool to go from
mathematical representation to working, extensible C++ code with a minimum amount of effort.

The heart of CMD is a powerful Object-Oriented Simulation Kernel (OSK) that represents
significant technology advances in the application of object-oriented principles to simulation
development and design [8]. The OSK architecture is language-independent and can serve as the
basis for recreating Mini-Rocket in other computer languages as shown in Figure . In fact, Mini-
Rocket as described in this User Guide has been replicated in Java and Python. Standalone
programs in these languages use the same identical input data file as the CMD-based executable
version.

Object-Oriented Simulation Kernel
• Train-of-objects
• Seamless mixing of hybrid models

C++ Model Developer JavaPython

Mini-RocketMini-Rocket Mini-Rocket

EAPS Concept 6DOF

Architecture
• Language Independent

Coding Mechanism
• Model Independent

Models
CKEM 6DOFMLRS 6DOF IDEEASAMCODE

Figure 14. Object-Oriented Simulation Architecture and Simulation
Construction Hierarchy

A key feature and state-of-the art advance of the OSK is the train-of-objects architecture
depicted in Figure . The OSK’s unique train-of-objects architecture is well suited for the
multiple stage modeling required by Mini-Rocket. The organization of the entities used by the
kernel is shown in Figure . At a micro-level, each state (that is each individual integrator) is a
C++ object (STATE in the figure). One or more states are combined, connected by algorithms
for their derivatives, into a block (or model). Several models are combined into a stage. Finally,
a series of stages are combined in a list. A simulation class in the kernel then decomposes this
“list-of-lists-of-lists” to execute the models in the desired order (specified by their order in the
lists) and, within each model, the appropriate methods described in the previous section.

Mini-Rocket User Guide HOW MINI-ROCKET WAS BUILT

 39

1
s
1
s
1
s

STATE

1
s

1
s, , ...[]1

s
1
s

1
s
1
s, , ...[]

, , ...[]f() f()
, , ...[]f() f()

, , ...[]f() f() , , ...[]f() f() , , ...[]f() f(), ,[], , ...[]f() f() , , ...[]f() f() , , ...[]f() f(), ,[]

BLOCK

STAGE

SIMULATION

INTEGRATOR OBJECT

MODEL OBJECT

STAGE OBJECT

STAGE OBJECT

SIMULATION OBJECT

Figure 15. OSK Train-of-Objects

Thus the kernel implements the object-oriented paradigm at all levels: dynamic states are objects,
models themselves are objects, stages are objects, and the aggregate simulation is an object. The
key feature is that staging is provided for in the simulation architecture itself and the Mini-
Rocket math models are not burdened with logic controlling the sequence of stages.

The first (and very successful application) of CMD was the U.S. Army Compact Kinetic Energy
Missile Program. This program funded CMD’s documentation in a U.S. Army Technical Report
[1] as a technology transfer to offer it to a much larger simulation domain and audience.

Mini-Rocket User Guide SUMMARY

 40

7 SUMMARY

Mini-Rocket fills an important simulation niche as shown by the vast number of applications and
tasks where it has been utilized over a number of years. In these analyses, the fidelity
requirements are not satisfied with a 3-DOF simulation, but the complexity, and associated
resource requirements, of a 6-DOF far exceed what is required to satisfy analysis needs. With
the progressive advent of faster and faster computing power, the difficulty with using a 6-DOF
(over a 3-DOF) is not any longer computer runtime but, instead, the far greater complexity of
configuring input for the 6-DOF owing to the detail of its underlying subsystem models. Mini-
Rocket resolves this issue, effectively having a broad subset of the fidelity of a 6-DOF
simulation, but with the resource requirements (runtime and input complexity) of a 3-DOF.

An integral part of the Mini-Rocket application success story is its malleability to be easily
modified and augmented. This report documents a packaged, standalone version of the
algorithms that comprise Mini-Rocket and this packaged tool has been, and will continue to be,
used by a wide audience. But, perhaps more importantly, a broader application arena for Mini-
Rocket is its flexibility to be molded and configured to address specific analysis and modeling
situations. The algorithm code is relatively short, concise, and readily understood, which makes
it very easy to modify for a broad domain of needs. The inherent modular nature of the object-
oriented simulation kernel behind CMD was a great medium for exploiting the power of the
algorithms behind Mini-Rocket. It is anticipated that Mini-Rocket will continue to morph into
even more application areas and coding mediums in the future.

In summary, Mini-Rocket is a versatile tool having the distinguishing characteristics of a high
degree of fidelity given its very modest complexity (the unique mathematical formulation), a
long legacy of successful application to establish credibility, and a flexible code structure that
enables it to be rapidly configured or modified for a wide variety of custom applications.

Mini-Rocket User Guide REFERENCES

 41

REFERENCES

1. Sells, H.R., Sanders, G.A., Snyder, G., Hester, J.W., and Painter, L. 2005. “C++ Model
Developer (CMD) User Guide.” U.S. Army Technical Report AMR-SG-05-12,
April 2005.

2. Sells, H.R., “Comparison of KDEC Aries Test Article Trajectories to Off-Line Model,”
Teledyne Brown Engineering technical letter SSDCSY-93-61AB01-1533100801-0573 to
Ms. Jackie Steele, U.S. Army Space and Strategic Defense Command, 10 August 1993.

3. Sells, H.R., “Mini-Rocket GEMS Implementation,” report delivered to Mr. Dan
Bowman, Teledyne Brown Engineering, 1995.

4. Sells, H.R., and Cupples, M., “ASAT Test Mission Scenario Analysis – Trajectory
Studies,” report for U.S. Army Space and Strategic Defense Command, contract
DASG60-97-C-0054, 21 January 1998.

5. Extended Air Defense Simulation (EADSIM) Methodology Manual, Section 5.9,
“Interceptor Missile Flight.” Teledyne Brown Engineering, Huntsville, AL, 1995.

6. Sells, H.R., and Leopard, P., “EAPS Simulation Build 6 – 6-DOF Simulation Description
and Delivery,” report delivered at EAPS Simulation Working Group #27 to Mr. George
Sanders, AMRDEC, 1 March 2007.

7. Sells, H.R., “Java Mini-Rocket Live Code Demo,” report and model delivery to Mr. Ron
Saylor, AMRDEC, 9 December 2005.

8. Sells, H.R., Sanders, G., and Saylor, R., “An Object-Oriented Simulation Kernel for a
Large Spectrum of Simulations,” Summer Computer Simulation Conference, Society for
Computer Simulation, 2006, Calgary, Alberta.

Mini-Rocket User Guide Acronyms

 42

ACRONYMS

3-DOF 3 Degree-of-Freedom
6-DOF 6 Degree-of-Freedom
AMCODE Aviation and Missile Collaborative Design Environment
AMRDEC Aviation and Missile Research, Development, and Engineering Center
ASAT Anti-Satellite Program
CKEM Compact Kinetic Energy Missile
CMD C++ MODEL DEVELOPER
DOF Degree-of-Freedom
IDEEAS Interactive Distributed Engineering Evaluation and Analysis Simulation
ISTC Integrated System Test Capability
IV&V Independent Verification and Validation
KDEC Kinetic Energy Weapon Digital Emulation Center
EAPS Extended Air Protection and Survivability
EADSIM Extended Air Defense Simulation
ECI Earth Centered Inertial
GEMS Generalized Energy Management Steering
OSK Object-Oriented Simulation Kernel
ROCKET Rand’s Omnibus Calculator of the Kinematics of Earth Trajectories
STARS Strategic Target System

Mini-Rocket User Guide APPENDIX 1: MAKING PLOTS

APPENDIX 1
MAKING PLOTS

Mini-Rocket User Guide APPENDIX 1 – MAKING PLOTS

 A-1

APPENDIX 1 – MAKING PLOTS

Although not a part of Mini-Rocket itself, a simple-to-use plotter is provided that is compatible
with the output files generated at runtime. The name of the plotter is wxpp. wxpp is a quick-and-
easy interactive, scriptable 2-d x-y plotting tool. It is primarily designed to expedite the rapid
visualization of simulation results as quickly as possible without the necessity of navigating
selection menus or other options. wxpp is fully scriptable since it is command-line driven with
options specified in an ASCII-text configuration file. Plots can be totally configured and
generated from simple scripts.

wxpp produces production-quality, high-resolution plots suitable for direct incorporation into
reports or briefings. Some of its most basic capabilities are briefly described here and should be
adequate for use with Mini-Rocket.

1.1 Installing the Plotter
wxpp is a single standalone Windows “.exe” file so it can easily be installed and used. Make
sure the file “wxpp.txt” is also in the same directory.

1.2 Basic Usage
The most fundamental way to use wxpp is from the command line to generate plots lightening
fast.

The environmental variable DATAFILE specifies the filename of the data to be plotted. This can
be set from the command line as:

C:> set DATAFILE=OutputRun0.dat

Within the data file, data to be plotted is formatted as

0
t rng h mach gammad v tx alph
0.000 0.00 0.00 0.00 40.00 0.01 0.0 0.00
0.770 450.99 372.96 5.40 39.50 1828.42 0.0 0.00
1.000 775.35 640.11 5.41 39.45 1828.69 1259.0 0.00

The contents of the first line is ignored and can contain any text (maybe some information about
the file’s contents for instance). The second line contains the names of the fields that can be
plotted. Each name corresponds to a column of data in the subsequent line. The remaining lines
of the file contain rows of data for each field.

The available fields for plotting can be queried by

C:> wxpp

Mini-Rocket User Guide APPENDIX 1 – MAKING PLOTS

 A-2

which results in

 0 t
 1 rng
 2 h
 3 mach
 4 gammad
 5 v
 6 tx
 7 alph

A simple one line plot is created:

C:> wxpp 0 5

An Example Plot

0 2 4 6 8 10 12
t

0

300

600

900

1200

1500

1800

2100

v

v

The arguments 0 and 5 are the x-value and y-value.

More than one parameter can be plotted

C:> wxpp 0 3 4

An Example Plot

0 2 4 6 8 10 12
t

0

10

20

30

40

m
a

ch

mach
gammad

The arguments 3 and 4 identify the fields to be plotted against field 0.

The plot can be dismissed (that is, closed) by selecting Exit from the File menu, selecting the
window close button, or, most expediently, simply hitting any key on the keyboard.

Mini-Rocket User Guide APPENDIX 1 – MAKING PLOTS

 A-3

1.3 Scaling
Normally, the scales are auto-adjusted. The scale can be manually specified with a -s option

C:> wxpp -s “0,6,1,0,40,10” 0 3 4

An Example Plot

0 1 2 3 4 5 6
t

0

10

20

30

40

m
a

ch

mach
gammad

The -s option requires a 6-element, comma-delimited list. The first three arguments are for the x
scale and the last three are for the y scale. For each, the arguments are starting value, ending
value, and increment. The 6-element, comma-delimited list must be enclosed by quotes as
shown.

The scale can be specified in one axis and auto-adjusted in the other. To preserve auto-scaling,
simply enter all 0’s. For example,

C:> wxpp -s “0,0,0,0,40,10” 0 3 4

Here, the plot is auto-scaled in x and specified in y.

1.4 Exporting Plots for Publication
A Windows metafile named “plot.wmf” is created each time a plot is made. This option
provides the powerful capability to generate publication-quality graphs for later inclusion in
documents. These type of files are easily imported into word processing and presentation
software. To preserve the plots between runs, manually change the name of the existing
“plot.wmf” file.

Mini-Rocket User Guide APPENDIX 2: EXAMPLE CASE

APPENDIX 2
EXAMPLE CASE

Mini-Rocket User Guide APPENDIX 2 – EXAMPLE CASE

 B-1

APPENDIX 2 - EXAMPLE CASE

An example case is shown here to acquaint the user with typical output and to illustrate Mini-
Rocket functionality.

The input for this example is exactly that used to describe the input in the previous “Input Data
File” section of this report. The missile being simulated is a hypothetical three-stage exo-
atmospheric missile vertically launched from the ground. Program operation in a Windows
environment is shown here. Of course, Mini-Rocket is cross-platform since it is written in
standard C++ and is operated from a simple console interface.

Operation proceeds as described in section “Installation.”

The input file, rocket.dat, is the same as described earlier.

First, the contents of the input data file are echoed (after the standard program output banner).

Mini-Rocket User Guide APPENDIX 2 – EXAMPLE CASE

 B-2

Computed program output to the console consists of those parameters specified for output in the
input data file in columnar format. Each row begins with the time followed by parameter values
at that time.

Mini-Rocket User Guide APPENDIX 2 – EXAMPLE CASE

 B-3

In this case, time is followed by range, altitude, velocity, flight path angle, and angle-of-attack.
A message is printed at stage separation (section change) events.

Console output is merely a convenience to see that the program ran and to quickly observe, in a
coarse sense, key flight parameters. Beyond that, it is difficult to discern much more from the
console output. The primary output record is constrained in a separate output text file. This file
is ASCII-text and can be opened with any simple text editor. The name of the file is that
specified with the identifier fname in the input data file.

An excerpt from the data file is as shown.

Mini-Rocket User Guide APPENDIX 2 – EXAMPLE CASE

 B-4

The parameters output here are identical to those sent to the console (parameter output for both
are specified with the single output specification list in the input data file). By virtue of being a
simple data file, this output is easily accessed by any external post-processing or data
visualization tool.

The wxpp plotting tool included with the Mini-Rocket distribution provides a convenient means
to quickly visualize the data in the form of two-dimensional plots. The program is invoked:

As explained in Appendix 1, five parameters are available for plotting (from the output data file,
OutputRun0.dat) with the first field of output being time. The trajectory can be plotted using
range (1 range) and altitude (2 h):

Mini-Rocket User Guide APPENDIX 2 – EXAMPLE CASE

 B-5

The resulting plot is:

The action of the three stages can easily be discerned in the velocity vs. time plot (wxpp 0 3):

Mini-Rocket User Guide APPENDIX 2 – EXAMPLE CASE

 B-6

The discontinuity in velocity (sudden change in slope or acceleration) at 40 seconds indicates the
transition to the second stage. Likewise, the discontinuity at 75 seconds clearly shows second
stage burnout and the transition to the third stage, where velocity is lost due to ballistic flight.

The guidance flight modes can be seen by plotting the flight path angle vs. time (wxpp 0 4):

The slope of the curve confirms execution of the guidance modes specified in the input data.
The guidance command tables in the input data can be summarized as follows:

Mini-Rocket User Guide APPENDIX 2 – EXAMPLE CASE

 B-7

time (sec) stage guidance mode

0-20 1 vertical launch, ballistic flight
20-30 1 pitch over at 1 deg/sec
30-40 1 pitch over to 75 deg flight path angle
40-60 2 fly ballistically
60-75 2 accelerate down (-z direction) at 11 m/sec2
75-100 3 fly ballistically

The maneuvers are verified by reconciling the entries in the table to the behavior of the plot. The
flight path stays constant at 90 degrees from vertical launch (0 to 20 seconds). The
1 degree/second pitch down is clearly seen as the flight angle goes from 90 to 80 degrees
(change of 10 degrees) in 10 seconds (20 to 30 seconds). Consistent with an equivalent time
constant of 1 second, the flight path angle quickly changes to 75 and holds there (30 to
40 seconds). The flight path angle slowly decreases as the missile flies ballistically and slowly
pitches down due to gravity (40 to 60 seconds). A downward acceleration is clearly observed in
response to the acceleration guidance command (60 to 75 seconds). Again, the downward pull
of gravity is seen by the slowly decreasing flight angle during the final ballistic flight segment
(75 to 100 seconds).

It is usually a good “sanity” check to confirm that the vehicle’s motion was “well-behaved” –
that is, the vehicle was not tumbling! An easy way to check this is to plot the Angle-of-Attack
(AOA):

It is quickly seen that the AOA stayed within a reasonable limit for the entire flight. Again, the
behavior in the table can be reconciled to the plot. The AOA was zero after launch until the
missile began to pitch over (0 to 20 seconds). The AOA becomes non-zero for the
1 degree/second pitchover (20 to 30 seconds). Notably, the AOA saturates (that is, reaches its

Mini-Rocket User Guide APPENDIX 2 – EXAMPLE CASE

 B-8

specified maximum limit of 9 degrees, alphmax in the data file) to fully accomplish the
75-degree flight path angle (30 to 40 seconds). Again the AOA is zero while the missile flies
ballistically (40 to 60 seconds). The AOA becomes non-zero for the downward acceleration
maneuver (60 to 75 seconds). Finally, the AOA is zero for the ballistic duration of the flight
(75 to 100 seconds).

Of course, the parameters that can be plotted are not limited to those shown here; a full range of
other parameters can be specified for plotting via selection in the input data. As shown by this
example, Mini-Rocket in tandem with quick turnaround plotting tool (like wxpp) form a potent
analysis tool to quickly determine missile performance and play “what-ifs” by perturbing the
parameters that characterize the missile. A myriad of analyses can be performed using the cycle
of steps shown in this example.

Mini-Rocket User Guide APPENDIX 2 – EXAMPLE CASE

 B-9

THIS PAGE LEFT INTENTIONALLY BLANK

 Dist-1

INITIAL DISTRIBUTION LIST

 Copies
Weapon Systems Technology Information Electronic
Analysis Center Ms. Vakare Valaitis
1901 N. Beauregard Street, Suite 400 vvalaitis@alionscience.com
Alexandria, VA 22311-1720

Defense Technical Information Center Jack Rike Electronic
8725 John J. Kingman Rd., Suite 9044 jrike@dtic.mil
Fort Belvoir, VA 220060-6218

Aviation Advanced Design Team Dr. Nancy M. Bucher Electronic
U.S. Army Aviation and Command (AMCOM) nancy.bucher@us.army.mil
Aeroflightdynamics Directorate (AFDD)
Ames Research Center, M/S 219-3
Moffett Field, CA 94035-1000

Commander, U.S. Army ARDEC Dan Ericson Electronic
ATTN: AMSRD-AR-AIS-SA dan.ericson@us.army.mil
Picatinny Arsenal, NJ 07806-5000

DESE Research, Inc. Mr. Ray Sells Electronic
315 Wynn Drive ray.sells@us.army.mil
Huntsville, AL 35805 Mr. Michael Fennell
 michael.fennell@amrdec.army.mil

George C. Marshall Space Flight Center Jim McCarter Electronic
Aerospace Engineer james.w.mccarter@nasa.gov
Mail Code EV42
Marshall Space Flight Center, AL 35812

Professor, Aerospace Engineering Dr. Roy J. Hartfield, Jr. Electronic
328 Aerospace Engineering Building hartfrj@auburn.edu
Auburn University, AL 35849-5338

Sensors Integration and Test and Evaluation George W. Snyder, Director Electronic
Directorate george.snyder@smdc.army.mil
SMDC-RDTC-TE Building 5220
U.S. Army Space and Missile Defense Command
USASMDC/ARSTRAT
Redstone Arsenal, AL 35898

 Dist-2

INITIAL DISTRIBUTION LIST (CONTINUED)

 Copies
University of Alabama in Huntsville Dr. Robert A. Frederick Electronic
Propulsion Research Center robert.frederick@uah.edu
5000 Technology Drive, TH S231 frederic@mae.uah.edu
Huntsville, AL 35899

University of Alabama in Huntsville Dr. D. Brian Landrum Electronic
Propulsion Research Center landrum@mae.uah.edu
5000 Technology Drive, S234
Huntsville, AL 35899

University of Alabama in Huntsville Dr. Nathan J. Slegers Electronic
Propulsion Research Center slegern@mae.uah.edu
5000 Technology Drive, N266
Huntsville, AL 35899

AMSRD-AMR Dr. William McCorkle Electronic
 bill.mccorkle@us.army.mil

AMSRD-AMR-AS-TI Mr. Ron Schmalbach Electronic
 ron.schmalbach@us.army.mil

AMSRD-AMR-CS-IC Electronic

AMSRD-AMR-PS Mr. C. Steven Cornelius Electronic
 steve.cornelius@us.army.mil

AMSRD-AMR-PS-PT Dr. Jay Lilley Electronic
 jay.lilley@us.army.mil
 Mr. Scott Michaels Electronic
 robert.michaels@us.army.mil

AMSRD-AMR-SG Dr. Robin B. Buckelew Electronic
 robin.buckelew@us.army.mil

 Dist-3

INITIAL DISTRIBUTION LIST (CONTINUED)

 Copies
AMSRD-AMR-SG-RF Mr. Michael Christian Electronic
 michael.r.christian@us.army.mil
 Mr. Chris Hamner Electronic
 chris.hamner@us.army.mil
 Mr. Jim Mullins Electronic
 james.mullinsiii@us.army.mil
 Ms. Janice C. Rock Electronic
 janice.rock@us.army.mil
 Dr. Brian Smith Electronic
 brian.jennings.smith@us.army.mil

AMSRD-AMR-SG-SD Dr. James Bauman Electronic
 james.baumann1@us.army.mil
 Mr. Jeffrey W. Hester Electronic
 jeffrey.hester@us.army.mil
 Mr. Phillip N. Jenkins Electronic
 philip.jenkins@us.army.mil
 Mr. Bill Nourse Electronic
 bill.nourse@us.army.mil
 Ms. Loretta Painter Electronic
 loretta.painter@us.army.mil
 Mr. Heniz Sage Electronic
 heinz.sage@us.army.mil
 Mr. Alfred Wright Electronic
 alfred.wright@us.army.mil

AMSRD-AMR-SS Mr. Richard Kretzschmar Electronic
 rich.kretzschmar@us.army.mil
 Mr. Greg B. Tackett Electronic
 gregory.tackett@us.army.mil

AMSRD-AMR-SS-AE Mr. Charlie Derrick Electronic
 charles.derrick@us.army.mil
 Ms. Laurie Fraser Electronic
 laurie.fraser@us.army.mil
 Mr. Tim McKelvy Electronic
 tim.mckelvy@us.army.mil
 Mr. George A. Sanders Electronic
 george.a.sanders@us.army.mil
 Mr. Ron Saylor Electronic
 ronald.saylor@us.army.mil

 Dist-4

INITIAL DISTRIBUTION LIST (CONTINUED)

 Copies
AMSRD-AMR-SS-AT Mr. Lamar Auman Electronic
 lamar.auman@us.army.mil
 Mr. Don Ferguson Electronic
 don.ferguson@us.army.mil
 Ms. Amanda Horton Electronic
 amanda.neely@us.army.mil
 Dr. James Keenan Electronic
 james.a.keenan@us.army.mil
 Ms. Melissa McDaniel Electronic
 melissa.mcdaniel@us.army.mil
 Mr. David B. Riddle Electronic
 david.b.riddle@us.army.mil
 Mr. Clark B. Roberts Electronic
 clark.b.roberts@us.army.mil
 Mr. Brett Wilks Electronic
 brett.wilks@us.army.mil

AMSRD-AMR-SS-AV Mr. Steve Low Electronic
 steven.low@us.army.mil

AMSRD-AMR-SS-EG Mr. Brian M. Harrison Electronic
 brian.marshal.harrison@us.army.mil
 Ms. Ann Kissell Electronic
 ann.kissell@us.army.mil

AMSRD-AMR-SS-MD Mr. Tim Carroll Electronic
 tim.carroll@us.army.mil
 Mr. Mark Horton Electronic
 mark.a.horton@us.army.mil

AMSRD-AMR-SS-TM Mr. Keith Jadus Electronic
 keith.jadus@us.army.mil
 Mr. Blake Haynes Electronic
 blake.haynes@us.army.mil
 Mr. Scott Speigle Electronic
 scott.speigle7@us.army.mil
 Mr. George Wiggs Electronic
 george.wiggs@us.army.mil

AMSRD-L-G-I Ms. Anne Lanteigne Electronic
 anne.lanteigne@us.army.mil

